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Abstract
The nature of the melting transition for a system of hard discs with translational
degrees of freedom in two spatial dimensions has been analysed by a
combination of computer simulation methods and a finite size scaling technique.
The behaviour of the system is consistent with the predictions of the Kosterlitz–
Thouless–Halperin–Nelson–Young (KTHNY) theory.

The structural and elastic properties of binary colloidal mixtures in two
and three spatial dimensions are discussed as well as those of colloidal systems
with quenched point impurities.

Hard and soft discs in external periodic (light-) fields show rich phase
diagrams including freezing and melting transitions when the density of the
system is varied. Monte Carlo simulations for detailed finite size scaling
analysis of various thermodynamic quantities like the order parameter, its
cumulants, etc, have been used in order to map the phase diagram of the system
for various values of the density and the amplitude of the external potential. For
hard discs we find clear indication of a reentrant liquid phase over a significant
region of the parameter space. The simulations therefore show that the system
of hard discs behaves in a fashion similar to charge stabilized colloids which
are known to undergo an initial freezing, followed by a remelting transition
as the amplitude of the imposed modulating field produced by crossed laser
beams is steadily increased. Detailed analysis of the simulation data shows
several features consistent with a recent dislocation unbinding theory of laser
induced melting. The differences and similarities of systems with soft potentials
(DLVO, 1/r12, 1/r6) and the relation to experimental data is analysed.

(Some figures in this article are in colour only in the electronic version)

4 Author to whom any correspondence should be addressed.

0953-8984/04/384115+22$30.00 © 2004 IOP Publishing Ltd Printed in the UK S4115

http://stacks.iop.org/JPhysCM/16/S4115


S4116 P Nielaba et al

1. Introduction

During the last decades, crystallization and melting of colloidal suspensions, both in two and
three dimensions (2D and 3D), has been a continuous matter of interest. From the experimental
point of view the research mostly focused on the analysis of structure and dynamics of the
colloidal systems on different length and time scales through static or dynamic light scattering
techniques. On the other hand, in theory the nature of the melting transition in 2D has been
controversially discussed at least since the work of Kosterlitz and Thouless (KTHNY-theory).
Obviously elastic constants play a crucial role in the solid to liquid phase transition: in 2D
the KTHNY theory even claims that the melting process is entirely controlled by the elastic
constants. However, both experimental and simulation studies of elastic constants are quite
rare. Therefore, the development of tools for the determination of elastic constants in (colloidal)
model systems is important.

The simulational approach makes use of a new coarse-graining procedure which has been
successfully tested for a hard disc system. In this technique, elastic strains are calculated from
the instantaneous configurations of the particles and averaged over sub-blocks of various linear
dimensions Lb � L of a system of total linear dimension L. From these data the correlation
function of strain fluctuations in the thermodynamic limit can be extracted and the elastic
constants then inferred from well known fluctuation formula.

This method is applied to models of colloidal systems containing quenched point
impurities and to colloidal mixtures. Interesting high pressure structures are found for colloidal
mixtures in two and three dimensions. Anisotropic situations caused by thin films of thickness
D are considered as well, and interesting modifications of the solid structures close to walls
are found.

Hard and soft discs in external periodic (light-) fields show rich phase diagrams including
freezing and melting transitions when the density of the system is varied. By Monte Carlo
simulation methods we have investigated the interesting phase diagrams of such systems for
various values of the density and the amplitude of the external potential.

Here we give an overview of the new method for the computation of elastic constants and
the application to various systems, on the behaviour of colloids in external light fields, and we
report on interesting recent results.

2. Elastic constants from microscopic strain fluctuations

2.1. The method

One is often interested in long length scale and long time scale phenomena in solids (e.g. late
stage kinetics of solid state phase transformations; motion of domain walls interfaces; fracture;
friction; etc). Such phenomena are usually described by continuum theories. Microscopic
simulations [1, 2] of finite systems, on the other hand, like molecular dynamics, lattice
Boltzmann or Monte Carlo, deal with microscopic variables like the positions and velocities
of constituent particles, and, together with detailed knowledge of interatomic potentials, hope
to build up a description of the macro system from a knowledge of these micro variables.
How does one recover continuum physics from simulating the dynamics of N particles? This
requires a ‘coarse-graining’ procedure in space (for equilibrium) or both space and time for
non-equilibrium continuum theories. Over what coarse graining length and time scale does one
recover results consistent with continuum theories? We attempted to answer these questions [3]
for the simplest nontrivial case, namely, a crystalline solid, (without any point, line or surface
defects [4]) in equilibrium, at a non-zero temperature far away from phase transitions.
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Consider a general system described by a scalar order parameter φ(r) and the free energy
functional

F[φ(r)] = kBT
∫

ddr
(

1
2rφ2 + 1

2 c∇φ(r)2) . (1)

This implies a correlation function G(q) in the high temperature phase T > Tc (〈φ〉 = 0) of
the Ornstein–Zernike form

βG(q) = 〈φqφ−q〉 = χ∞ 1

1 + (qξ)2
(2)

(kB is the Boltzmann constant, T the temperature, and β = 1/kBT ).
In the computer simulation we determine φ averaged within a sub-block of size Lb � L,

φ = L−d
b

∫ Lb

ddr φ(r). (3)

Then the fluctuations of φ obtained within this block are given by

〈φ2〉Lb Ld
b = L−d

b

∫ Lb

ddr ′ ddr 〈φ(r)φ(r ′)〉 (4)

=
∫ Lb

ddr βG(r) ≡ χ Lb , (5)

where G(r) is the inverse Fourier transform of the correlation function defined in (2).
This concept has been proven to be very useful for Ising-type systems. Here we discuss

the generalization of the concept to systems where the important degree of freedom is the strain
field, which is of tensor character rather than scalar.

Fluctuations of the instantaneous local Lagrangian strain εi j(r, t), determined with respect
to a static ‘reference’ lattice, are used to obtain accurate estimates of the elastic constants of
model solids from atomistic computer simulations. The computed strains are systematically
coarse-grained by averaging them within subsystems (of size Lb) of a system (of total size
L) in the canonical ensemble, ε̄i j = L−d

b

∫ Lb ddr εi j (r). Using the finite size scaling ideas
outlined below we predict the behaviour of the fluctuations 〈ε̄i j ε̄kl 〉 as a function of Lb/L and
extract elastic constants of the system in the thermodynamic limit at non-zero temperature. Our
method is simple to implement, efficient and general enough to be able to handle a wide class
of model systems including those with singular potentials without any essential modification.

Imagine a system in the constant NVT (canonical) ensemble at a fixed density ρ = N/V
evolving in time t . For any ‘snapshot’ of this system taken from this ensemble, the local
instantaneous displacement field uR(t) defined over the set of lattice vectors {R} of a reference
lattice (at the same density ρ) is uR(t) = R(t)− R, where R(t) is the instantaneous position
of the particle tagged by the reference lattice point R. Let us concentrate only on perfect
crystalline lattices; if topological defects such as dislocations are present the analysis below
needs to be modified. The instantaneous Lagrangian strain tensor εi j defined at R is then given
by [4]

εi j = 1

2

(
∂ui

∂R j
+
∂u j

∂Ri
+
∂ui

∂Rk

∂uk

∂R j

)
. (6)

The strains considered here are always small and so we, hereafter, neglect the non-linear terms
in the definition given above for simplicity. The derivatives are required at the reference lattice
points R and can be calculated by any suitable finite difference scheme once uR(t) is known.
We are now in a position to define coarse grained variables ε̄i j which are simply averages of
the strain over a sub-block of size Lb. The fluctuation of this variable then defines the size
dependent compliance matrices SLb

i jkl = Ld
b〈ε̄i j ε̄kl 〉.
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2.2. Two-dimensional systems

Before proceeding further, we introduce a compact Voigt notation (which replaces a pair of
indices i j by one α) appropriate for two-dimensional strains—the case considered in this
subsection. Using 1 ≡ x and 2 ≡ y, we have

i j = 11 22 12 α = 1 2 3. (7)

The non-zero components of the compliance matrix are

SLb
11 = L2

b〈ε̄xx ε̄xx 〉 = SLb
22 SLb

12 = L2
b〈ε̄xx ε̄yy〉 = SLb

21 SLb
33 = 4L2

b〈ε̄xy ε̄xy〉. (8)

It is useful to define the following linear combinations:

SLb
++ = L2

b〈ε̄+ε̄+〉 = 2(SLb
11 + SLb

12 ) SLb−− = L2
b〈ε̄− ε̄−〉 = 2(SLb

11 − SLb
12 ), (9)

where ε̄+ = ε̄xx + ε̄yy and ε̄− = ε̄xx − ε̄yy. Once the block averaged strains ε̄i j are obtained, it
is straightforward to calculate these fluctuations (for each value of Lb).

The block averaged compliance matrices approach the limiting values for large Lb [3],

SLb
γ γ = S∞

γ γ

[

2(x L/ξ)−

(

2(L/ξ)− C

( a

L

)2
)

x2

]
+ O(x4), (10)

where γ takes the values +, − or 3 and x = Lb/L, and we have suppressed subscripts on the
correlation length ξ and the constant C for clarity. 
2(α) is defined as


2(α) = 2

π
α2

∫ 1

0

∫ 1

0
dx dy K0

(
α
√

x2 + y2
)
, (11)

where K0 is a Bessel function. The above equation (10) can now be used to obtain the system
size independent quantities S∞

αβ , ξ and C .
Once the finite size scaled compliances are obtained the elastic constants, namely the bulk

modulus B = ρ∂p/∂ρ and the shear modulus µ, are obtained simply using the formulae [5]

βB = 1

2S∞
++

βµ = 1

2S∞−−
− βp βµ = 1

2S∞
33

− βp, (12)

where we assume that the system is under a uniform hydrostatic pressure p.
As an example we present our results for elastic constants of the hard disc system in

figure 1. The two expressions for the shear modulus in equation (12) give almost identical
results, and this gives us confidence about the internal consistency of our method. We have
also compared our results to those of Wojciechowski et al [6]. We find that while their values
of the pressure and bulk modulus are in good agreement with ours (and with free volume
theory) they grossly overestimate the shear modulus. This is probably due to the extremely
small size of their systems and/or insufficient averaging. Our results for the sub-block analysis
shows that finite size effects are non-trivial for elastic strain fluctuations and they cannot be
evaluated by varying the total size of the system from 24 to 90, an interval which is less than
half of a decade. One immediate consequence of our results is that the Cauchy relation [6]
µ = B/2 − p∗ is seen to be valid up to ±15% over the entire density range we studied, though
there is a systematic deviation which changes sign, going from negative for small densities to
positive as the density is increased. This is in agreement with the usual situation in a variety
of real systems [7] with central potentials and highly symmetric lattices, and in disagreement
with [6]. We have also compared our estimates for the elastic constants with the density
functional theory (DFT) of Ryzhov and Tareyeva [8]. We find that both the bulk and the shear
moduli are grossly overestimated—sometimes by as much as 100%.

By application of such a method to configurations obtained experimentally by video
microscopy methods it was possible to analyse precisely experimental results on the elasticity
of colloidal systems [9].
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Figure 1. The bulk (B) and shear (µ) moduli in units of kBT/σ 2 for the hard disc solid. Our results
for B (µ) are given by squares (diamonds). The values for the corresponding quantities from [6]
are given by + and ×. The curve through the bulk modulus values is the analytical expression
obtained from the free volume prediction for the pressure. The curve through our shear modulus
values is obtained from the free volume bulk modulus using the Cauchy relation µ = B/2 − p.
From Sengupta et al [3, 18].

2.3. One-dimensional systems

In order to analyse the finite-size scaling features of our method in more detail, we present here
the scaling analysis for a one-dimensional harmonic chain with lattice constant a, for which
the scaling form can be computed analytically [10].

The free energy is given by

F =
∫

dx
B

2
ε2

with strain ε = ∂u
∂x and bulk modulus B . An arbitrary lattice-phonon has the form

sn = A cos(qna − ωt) + C sin(qna − ωt).

The calculation of the canonical ensemble average SLb = Lb〈ε̄2〉 yields the following scaling
law (x = Lb/L):

xSLb = K1x + K2x2 N +
K3

N
, (13)

where K1, K2 and K3 are constants and N is the number of particles in the system.
In figure 2 we show that indeed the results for the compliance matrix obtained with our

method follow closely the shape of the simple parabola resulting in equation (13).

2.4. Three-dimensional systems

An analysis of the finite size scaling method in three dimensions [11] reveals that quantities in
the thermodynamic limit in three dimensions are obtained by fitting data to the form (x = Lb/L)

χ Lb = χ∞ [

3(x L/ξ)−
3(L/ξ)x

3] + O(x4), (14)

where the function 
3(α) is defined for a three-dimensional system as


3(α) = 1 − e−α(α + 1). (15)
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Figure 2. Strain–strain fluctuations or elements of the compliance matrix S for a one-dimensional
periodic harmonic chain as a function of relative sub-block size Lb/L , symbols: simulation data;
curve: fit to the scaling function equation (13). The results (symbols) shown are for a system of
N = 500 particles at ρ∗ = 1.0, β = 1, spring constant = 1. In a run with 3 × 106 Monte Carlo
steps (MCS) 3 × 105 data points have been sampled after an equilibration of 106 MCS.

For Lb → L the block-averaged fluctuation quantity approaches zero, χ Lb → 0. In the case
when the correlation length ξ is small compared to the system size L, then 
3(α) → 1, and
equation (14) goes over to the simple form

χ Lb · x = χ∞[x − x4]. (16)

The elastic free energy of a cubic crystal is

Felast = 1
2

∫
d3r{C11(ε

2
xx + ε2

yy + ε2
zz)

+ 2C12(εxxεyy + εxxεzz + εyyεzz) + 4C44(ε
2
xy + ε2

xz + ε2
yz)} (17)

= 1
2

∫
d3r

{
A(εxx + εyy + εzz)

2 + B
[
(εxx − εyy)

2 + (εxx − εzz)
2 + (εyy − εzz)

2
]

+ 4C44(ε
2
xy + ε2

xz + ε2
yz)

}
, (18)

where

C11 = A + 2B (19)

C12 = A − B. (20)

In three dimensions we use the following Voigt-notation (1 = x , 2 = y, 3 = z):

i j = 11 22 33 23 13 12
α = 1 2 3 4 5 6.

The non-zero components of the compliance matrix are

SLb
++ = L3

b〈(ε̄xx + ε̄yy + ε̄zz)
2〉

SLb
12 = L3

b〈(ε̄xx − ε̄yy)
2〉 = SLb

13 = SLb
23

SLb
44 = 4L3

b〈ε̄xy ε̄xy〉 = SLb
55 = SLb

66 .

We are interested in the elastic properties far away from phase transition points; under these
conditions we use equation (14) up to third order in x :

SLb
γ γ · x = S∞

γ γ

[
x
3(x L/ξ)− x4 (


3(L/ξ)− C ′(a/L)3
)]
. (21)
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Using the equipartition theorem, the elastic constants finally can be obtained from

βA = 1

2S∞
++

βB = 1

2S∞
12

= 1

2S∞
13

= 1

2S∞
23

βC44 = 1

2S∞
44

= 1

2S∞
55

= 1

2S∞
66

and equations (19), (20).
Returning to the d = 2 case, we briefly review the successful applications of equations (7)–

(12) to a monodisperse system, before we show first applications to other systems.

3. Melting of hard discs in two dimensions

One of the first continuous systems to be studied by computer simulations [12] is the system
of hard discs of diameter σ interacting with the two-body potential,

U(r) =
{

∞ r � σ

0 r > σ ,
(22)

where σ (taken to be 1 in the rest of the paper), the hard disc diameter, sets the length scale
for the system and the energy scale is set by kBT = 1. Despite its simplicity, this system was
shown to undergo a phase transition from solid to liquid as the density ρ was decreased. The
nature of this phase transition, however, is still being debated. Early simulations [12] always
found strong first order transitions. As computational power increased the observed strength
of the first order transition progressively decreased! Using sophisticated techniques, Lee and
Strandburg [13] and Zollweg and Chester [14] found evidence for, at best, a weak first order
transition. A first order transition has also been predicted by theoretical approaches based on
density functional theory [15, 8]. On the other hand, recent simulations of hard discs [16]
find evidence for a KTHNY transition [17] from liquid to a hexatic phase, with orientational
but no translational order, at ρ = 0.899. Nothing could be ascertained, however, about the
expected transition from the hexatic phase to the crystalline solid at higher densities because
the computations became prohibitively expensive. The solid to hexatic melting transition was
estimated to occur at a density ρc � 0.91. A priori, it is difficult to assess why various
simulations give contradicting results concerning the order of the transition. In [18] we took
an approach, complementary to Jaster’s [16], and investigated the melting transition of the
solid phase. We showed that the hard disc solid is unstable to perturbations which attempt to
produce free dislocations leading to a solid → hexatic transition in accordance with KTHNY
theory [17] and recent experiments in colloidal systems [19]. Though this has been attempted
in the past [6, 20], numerical difficulties, especially with regard to equilibration of defect
degrees of freedom, makes this task highly challenging. The elastic Hamiltonian for hard
discs is given by F = −pε2

+ + (B/2)ε2
+ + (µ + p)(ε2−/2 + 2ε2

xy), where B is the bulk modulus.
The quantityµeff = µ+ p is the ‘effective’ shear modulus (the slope of the shear stress versus
shear strain curve) and p is the pressure.

The KTHNY theory [17] is presented usually for a 2D triangular solid under zero
external stress. It is shown that the dimensionless Young’s modulus of a 2D solid, K =
(8/

√
3ρ)(µ/{1 +µ/(λ+µ)}),where µ and λ are the Lamé constants, depends on the fugacity

of dislocation pairs, y = exp(−Ec), where Ec is the core energy of the dislocation, and the
‘coarse-graining’ length scale l. This dependence is expressed in the form of the following
coupled recursion relations for the renormalization of K and y:

∂K −1

∂l
= 3πy2e

K
8π

[
1

2
I0

(
K

8π

)
− 1

4
I1

(
K

8π

)]
,

∂y

∂l
=

(
2 − K

8π

)
y + 2πy2e

K
16π I0

(
K

8π

)
,

(23)
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1/16 π
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Figure 3. Left: schematic flows of the coupling constant K and the defect fugacity y under the
action of the KTHNY recursion relations. The dashed line is the separatrix whose intersection
with the line of initial state (solid curve connecting filled circles, y(T, l = 0), K −1(T, l = 0))
determines the transition point Tc. Right: typical move which attempts to change the coordination
number and therefore the local connectivity around the central particle. Such moves were rejected
in our simulation.

where I0 and I1 are Bessel functions. The thermodynamic value is recovered by taking the
limit l → ∞.

We see in figure 3 that the trajectories in the y–K plane can be put in two classes, namely
those for which y → 0 as l → ∞ (ordered phase) and those for which y → ∞ as l → ∞
(disordered phase). These two classes of flows are separated by a line called the separatrix.
The transition temperature Tc (or ρc) is given by the intersection of the separatrix with the line
of initial conditions K (ρ, T ) and y = exp(−Ec(K )), where Ec ∼ cK/16π . The disordered
phase is a phase where free dislocations proliferate. Proliferation of dislocations, however,
does not produce a liquid, but rather a liquid crystalline phase called a ‘hexatic’ with quasi-
long ranged (QLR) orientational order but short ranged positional order. A second KTHNY
transition destroys QLR orientational order and takes the hexatic to the liquid phase by the
proliferation of ‘disclinations’ (scalar charges). Apart from Tc there are several universal
predictions from KTHNY theory: for example, the order parameter correlation length and
susceptibility have essential singularities (∼ebt−ν

, t ≡ T/Tc −1) near Tc. All these predictions
can, in principle, be checked in simulations [16].

One way to circumvent the problem of large finite size effects and slow relaxation due
to diverging correlation lengths is to simulate a system which is constrained to remain defect
(dislocation) free and, as it turns out, without a phase transition. Surprisingly, using this data
it is possible to predict the expected equilibrium behaviour of the unconstrained system. The
simulation [18] is always started from a perfect triangular lattice which fits into our box, the
size of the box determining the density. Once a regular Monte Carlo (MC) move is about to be
accepted, we perform a local Delaunay triangulation involving the moved disc and its nearest
and next nearest neighbours. We compare the connectivity of this Delaunay triangulation with
that of the reference lattice (a copy of the initial state) around the same particle. If any old bond
is broken and a new bond formed (figure 3) we reject the move since one can show that this
is equivalent to a dislocation–antidislocation pair separated by one lattice constant involving
dislocations of the smallest Burger’s vector.

Microscopic strains εi j (R) can be calculated now for every reference lattice point R. Next,
we coarse grain (average) the microscopic strains within a sub-box of size Lb and calculate
the (Lb dependent) quantities [3]

SLb
++ = L2

b〈ε̄+ε̄+〉, SLb−− = L2
b〈ε̄−ε̄−〉, SLb

33 = 4L2
b〈ε̄xy ε̄xy〉. (24)
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The elastic constants in the thermodynamic limit are obtained from the set B = 1/(2S∞
++) and

µeff = 1/(2S∞−−) = 1/(2S∞
33 ). We obtain highly accurate values of the unrenormalized

coupling constant K and the defect fugacity y which can be used as inputs to the
KTHNY recursion relations. Numerical solution of these recursion relations then yields the
renormalized coupling KR and hence the density and pressure of the solid to hexatic melting
transition.

We can draw a few very precise conclusions from our results. Firstly, a solid without
dislocations is stable against fluctuations of the amplitude of the solid order parameter and
against long wavelength phonons. So any melting transition mediated by phonon or amplitude
fluctuations is ruled out in our system. Secondly, the core energy Ec > 2.7 at the transition, so
KTHNY perturbation theory is valid though numerical values of nonuniversal quantities may
depend on the order of the perturbation analysis. Thirdly, solution of the recursion relations
shows that a KTHNY transition at pc = 9.39 preempts the first order transition at p1 = 9.2.
Since these transitions, as well as the hexatic–liquid KTHNY transition, lie so close to each
other, the effect of (as yet unknown) higher order corrections to the recursion relations may need
to be examined in the future. Due to this caveat, our conclusion that a hexatic phase exists
over some region of density exceeding ρ = 0.899 still must be taken as preliminary [21].
Also, in actual simulations, cross-over effects near the bicritical point, where two critical lines
corresponding to the liquid–hexatic and hexatic–solid transitions meet a first order liquid–solid
line, may complicate the analysis of the data, which may, in part, explain the confusion which
persists in the literature on this subject.

4. Solid structures of soft disc systems near walls

In this section we present some computational results [22] for a soft discs triangular crystal in a
confined geometry. We perform standard NVT Monte Carlo simulations. First we investigate
how the crystal rearranges itself in the presence of the wall. We compute the change in the
distance and in the orientation between crystal planes with respect to the bulk case. During
the simulation the system is constrained to remain free of defects.

As interaction potential we chose a truncated repulsive Lennard-Jones interaction:

U(r) =

 ε

(σ
r

)12
r < rc,

0 otherwise,
(25)

with a cutoff-distance rc = 2.5σ . The density is ρ∗ = ρσ 2 = 1.05 and the temperature is
T ∗ = kBT/ε = 1.

We want to study the effect of confinement on the crystal. The confinement is modelled by
two perfectly repulsive smooth walls at a distance D/σ = D∗. The wall–particle interaction
potential is either modelled by integration over the repulsive part of the Lennard-Jones
interaction,

Uwall(x) = εwall

( σ

|x − xwall|
)10
, (26)

or simply by hard walls,

Uwall(x) =
{

0 0 < x < D∗,

∞ elsewhere.
(27)

A cartoon of the system geometry is given in figure 4.
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Uwall

Figure 4. Cartoon of the system geometry.

We simulate with the standard metropolis Monte Carlo algorithm two kinds of systems.

• One of 780 particles which corresponds to 30×26 unit cells of triangular lattice in a nearly
square box; the density is ρ∗ = ρσ 2 = 1.05 and the temperature T ∗ = kBT/ε = 1.

The lattice spacing is a =
√

2√
3ρ

≈ 1.049 so the distance between the walls here is

D∗ = Dσ = 30
√

3
2 a ≈ 27.245.

• One of 1200 particles in a box with tilted sides which form an angle of 60◦. Here we
want to consider a thin film-like case and at the same time we try to simulate better the
triangular geometry of the lattice. We consider 60 × 20 unit cells. The density and the
temperature have the same values as in the previous case and so here the distance between
the walls is (again in unit of σ ) D∗ = 20

√
3

2 a ≈ 18.163.

Regarding the bulk behaviour, at the chosen density and temperature, the soft discs are in the
crystal phase [23] but when we introduce walls with a sufficiently small εwall or in case of hard
walls, there is no crystal any more after the equilibration as we see in the two snapshots of
figure 5.

In order to avoid this problem, and to evaluate properly the local strain field, our simulations
are constrained to stay dislocation free as in [18].

We see that, due to the wall, the first lattice planes in the x direction (parallel to the wall)
change their spacing in comparison to the bulk case quite significantly; the crystal now is
‘squeezed’ or ‘lengthened’ in the x-direction. For the effect of the wall potential, see figure 6.

We further analysed the variation of the angle α between lattice planes; see figure 7. α is
now is slightly different from 60◦, the value for the undeformed lattice; see figure 7.

5. Colloidal mixtures

We also have considered colloidal mixtures with different diameters in two and three
dimensions and the composition dependence of their phase behaviour and the elastic properties.
A priori it is not obvious if such systems are softer or harder compared to the corresponding
monodisperse systems, and a systematic study is required in order to design materials with
well defined elastic properties at a later stage. Besides this, already in two spatial dimensions
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Figure 5. Typical configurations of the system. The walls here are parallel to the short side (left
picture) and the tilted side (right picture).

planes

0

1

2

3

4

di
st

an
ce

 f
ro

m
 th

e 
le

ft
 w

al
l

0

1

2

3

4

di
st

an
ce

 f
ro

m
 th

e 
le

ft
 w

al
l

 ε
 wall

=0.5
 ε

 wall
=0.05

 ε
 wall

=0.005
 ε

wall
=0.0005

Hardwalls
Bulk

 ε
 wall

=0.5
 ε

 wall
=0.05

 ε
 wall

=0.005
 ε

wall
=0.0005

Hardwalls
Bulk

D
*
=18,163

1 2 3 4 5
planes

1 2 3 4 5

D
*
=27,245

Figure 6. Change in distance between the crystal planes parallel to the wall direction for two
wall-distances.

interesting structures have been found which significantly deviate from the traditional triangular
lattice for certain diameter ratios.

5.1. Mono-disperse hard sphere system with point-like impurities

In order to analyse the effect of point impurities on the elastic properties of a triangular
system of hard discs, we applied our method to the case of quenched impurities with various
concentrations [10]. A typical configuration with N = 3072 particles and n = 124 impurities
is shown in figure 8. In a typical run with 6.5×106 MCS, 550 000 data points have been sampled
after an initial equilibration of 106 MCS. A quenched average was obtained by averaging over
100 runs with random placements of the impurities fixed at their initial place. The resulting
strain–strain fluctuations for systems with 4% impurities are shown in figure 8. The simulation
box has a side length ratio L y/Lx = 2/

√
3. The elastic constants for various concentrations

of point-like impurities can now be obtained by our method, and they are shown in figure 9.
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Figure 7. Angle α between lattice planes. Left side: schematic picture. Right side: numerical
values according to our simulations; the value of α for hard walls is αhard walls = 60.68.
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impurities (N = 3072, �∗ = 1.0). Right: quenched average of the strain–strain fluctuations
(averages and error bars from 100 runs with random initial placements of 124 point impurities).

We note substantial hardening of the material; already at an impurity concentration of 4% the
shear modulus has nearly increased by 100%. The difference in the side lengths Lx and L y

results in a difference between the values for the shear modulus as calculated from S−− or S33.

5.2. Binary colloidal mixtures in two dimensions

In order to be able to use our method, the reference state R must be known. For binary mixtures
of hard spheres with different diameters dA and dB, thermodynamically stable reference states R
thus must be determined. For this purpose simulations in the N pT ensemble have been
done [10]. In these simulations additional volume-moves vary the geometry of the system’s
volume, so that a condensation to a lattice is not inhibited by the geometry of the system’s
volume.

In figures 10 and 11 we show high pressure phases for binary mixtures of equal
concentration xA = NA/N = xB = NB/N = 1/2 and diameter ratios dB/dA = 0.414
and dB/dA = 0.637.
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Figure 9. Bulk- (left-hand side) and shear- (right-hand side) modulus of a triangular lattice as
a function of impurity concentration (point impurities, quenched average). The error bars are
obtained from slope errors in figure 8.

Figure 10. High pressure structures for p∗ = 36, NA + NB = 1800, xA = xB = 1/2, dB
dA

= 0.414.
Left: configurations; right: lines connecting nearest neighbours of the same type within 1.3σA or
1.3σB, respectively.

For a diameter ratio of 0.414, a square lattice structure is stable. In this case the free
energy in terms of elastic constants is

F =
∫

d2r
B

2
ε2

+ +
µeff

2
ε2
− + 4

µ′
eff

2
ε2

xy , (28)

where µeff 
= µ′
eff . The strain–strain fluctuations for a system with N = 3042 particles at a

density ρ∗ = 1.76 and the resulting elastic constants as functions of the density are shown in
figure 12.

5.3. Three-dimensional systems

For various diameter ratios of the hard spheres interesting solid structures appear at high
pressure. Example configurations from an N pT simulation of an A–B hard sphere mixture
with N = 1620 particles, diameter ratio 0.5272 and concentration xA = NA/N = 0.5 are
shown at high and low pressure in figure 13.
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Figure 11. High pressure structures for p∗ = 36, NA + NB = 1768, xA = xB = 1/2, dB
dA

= 0.637.
Left: configurations; right: lines connecting nearest neighbours of the same type within 1.3σA or
1.3σB, respectively.
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Figure 12. Left: strain–strain fluctuations for ρ∗ = 1.76; right: elastic constants as functions of
density. (NA + NB = 3042, xA = xB = 1/2, dB/dA = 0.414, single runs with an equilibration of
106 MCS and an average over 550 000 data points from a simulation with 6.5 × 106 MCS.)

6. Phase transitions of model colloids in external periodic light fields

6.1. Model and method

The liquid–solid transition in two-dimensional systems of particles under the influence
of external modulating potentials has recently attracted a fair amount of attention
from experiments [24–29, 19], density functional theory [30, 31], dislocation unbinding
calculations [32, 17] and computer simulations [33–36]. This is partly due to the fact that
well controlled, clean experiments can be performed using colloidal particles [37] confined
between glass plates, producing essentially a two-dimensional system. These systems are
subjected to a spatially periodic electromagnetic field generated by two interfering crossed
laser beams. This field acts on the particles like a commensurate, one dimensional, modulating
potential. One of the more surprising results of these studies is the fact that there exist regions



Elastic properties, structures and phase transitions in model colloids S4129

Figure 13. Configurations of an A–B hard sphere mixture (N = 1620, xA = 0.5, dB/dA =
0.5272). Left: disordered configuration at p∗ = 40; right: slightly distorted configuration at
p∗ = 70. The starting configuration was a perfect ordered AB2 structure. For clarity reasons the
particles are drawn with half of their diameters.

in the phase diagram over which one observes reentrant [27–29] freezing/melting behaviour.
As a function of the laser field intensity, the system first freezes from a modulated liquid to
a two-dimensional triangular solid. A further increase of the intensity confines the particles
strongly within the troughs of the external potential, suppressing fluctuations perpendicular to
the troughs, which leads to an uncoupling of neighbouring troughs and to remelting.

Based on these considerations we therefore expect an influence of the range of the particle
potential on the width of the freezing and/or reentrance region. In particular, since the
fluctuations of the particles perpendicular to the troughs (see the argument above) become
less important for longer ranged potentials, we expect the reentrance region to be smaller (or
even vanishing) for long ranged potentials.

To clarify the situation, a comparative study [38] of the effect of the range of the interaction
potentials on the reentrance region by computer simulations for different types of particle
potentials [39–42] has been done, with particular focus on the dependence of the width of
the freezing/reentrance region on the particle potential. In addition, experimental results on
colloidal particles [29] are compared with our data.

6.1.1. The model. We study a system of N particles in a two-dimensional rectangular box
of size Sx × Sy (Sx/Sy = √

3/2) and periodic boundary conditions. The particles interact by
a pair potential φ(ri j ) [37], where ri j is the distance between particle i and j .

We use the following potentials:

• hard discs with diameter σ [39]:

φ(ri j ) =
{

∞ ri j � σ

0 ri j > σ .
(29)

Here we use a reduced density: ρ∗ = ρσ 2.
• DLVO (Derjaguin, Landau, Vervey and Overbeek) potential [40]:

φ(ri j ) = (Z∗e)2

4πε0εr

(
exp(κR)

1 + κR

)2 exp(−κri j)

ri j
, (30)
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where R is the radius of the particles, κ =
√

e2

ε0εrkB T

∑
i ni z2

i the inverse Debye screening

length, Z∗ the effective surface charge, and εr the dielectric constant of water. We use
εr = 78, 2R = 1.07 µm and Z∗ = 7800. The temperature is chosen as in experimental
setups, T = 293.15 K (i.e., 20 ◦C), and the particle density such that the particle spacing
in an ideal lattice is as = 2.525 78µm. The different values for the reduced inverse Debye
screening length κas, which is the dominant parameter here, are obtained by varying κ
as required. In addition, we use a cut-off radius rc: φ(r > rc) = 0, where rc obeys the
condition φ(rc) = 0.001 kBT .

• algebraic potentials [41, 42]:

φ(ri j ) = kBT/rn, (31)

where we examine n = 12 and 6. We chose rc = 2 for n = 12, and rc = √
10 for n = 6.

The forces of the laser field on a particle with coordinates (x, y) is modelled as follows:

V (x, y) = V0 sin(2π x/d0). (32)

The constant d0 in equation (32) is chosen such that, for a density ρ = N/(Sx Sy), the
modulation is commensurate to a triangular lattice of particles with nearest neighbour distance
as: d0 = as

√
3/2.

The main parameters which define our systems are ρ∗ or ρ (or κas for the DLVO potential)
and the reduced potential strength V0/kBT = V ∗

0 .

6.1.2. Observables. In order to obtain thermodynamic quantities for a range of system sizes,
we use subsystems of size Lx × L y , where L y = Las and Lx = L y

√
3/2 = Ld0.

In the presence of the external potential, we use the positional order parameter ψG1 to
detect the phase transition between modulated liquid (at low density) and crystal (at high
density):

ψG1 =
∣∣∣∣∣ 1

N

N∑
j=1

exp(i �G1 · �r j)

∣∣∣∣∣ , (33)

where �r j is the position vector of the j th particle. �G1 is one of the six smallest reciprocal
lattice vectors of the two-dimensional triangular lattice, pointing in a direction at an angle of
π/3 to the x-axis.

In zero external field the crystal can rotate easily, and we therefore use an orientation-
corrected version of ψG1 , which we denote by ψ̃G1 . The orientation of the crystal can be
extracted from the phase information of the orientational order parameter ψ6. For a particle j
located at �r j we define the local orientational order:

ψ6, j = 1

Nb

Nb∑
l=1

ei6θl j ,

where Nb is the number of nearest neighbours, and θl j the angle between the axis �rl − �r j and
an arbitrary reference axis. For the total system we set

ψ6 =
∣∣∣∣∣ 1

N

N∑
j=1

ψ6, j

∣∣∣∣∣ .
Properties of these order parameters are described in [40].
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Figure 14. Phase diagram of hard discs (N = 1024) [39].
At V ∗

0 = 0.2 a change from a linear to a logarithmic scale
on the x-axis is indicated by a vertical line.

Figure 15. Phase diagram in the case of the DLVO
interaction potential (N = 1024) [40]. At V ∗

0 = 0.2 a
change from a linear to a logarithmic scale on the x-axis
is indicated by a vertical line.

Based on these order parameters, we have determined phase transition points by the
cumulant intersection method. The fourth order cumulant UL of the order parameter
distribution is given by [43]

UL (V
∗
0 , ρ

∗|ρ|κas) = 1 − 〈ψ4
x 〉L

3〈ψ2
x 〉2

L

, (34)

where ψx refers to one of the order parameters described above. In order to distinguish
between the cumulants of ψ6 and ψG1 , we denote them with UL ,6 and UL ,G , respectively. In
the liquid (short ranged order) UL → 1/3, and in the solid (long range order) UL → 2/3 for
L → ∞. In the case of a continuous transition close to the transition point the cumulant is
only a function of the ratio of the system size ≈Las and the correlation length ξ : UL(Las/ξ).
Since ξ diverges at the critical point the cumulants for different system sizes intersect in one
point: UL1(0) = UL2(0) = U∗. U∗ is a non-trivial value, i.e., U∗ 
= 1/3 and 2/3. Even
for first order transitions these cumulants intersect [44], though the value U∗ of UL at the
intersection is not universal any more. The intersection point can, therefore, be taken as the
phase boundary regardless of the order of the transition. In the case of a KTHNY transition we
expect a merging of the cumulants at the onset of the ordered phase, rather than an intersection
point.

In all scenarios the cumulant intersection- or merging points should reliably detect the
phase transition. Therefore, in order to map the phase diagram, we systematically vary the
system parameters V ∗

0 and ρ∗ or ρ (or κas) and identify the cumulant intersection- or merging
points with the phase boundary.

6.1.3. Numerical details. Monte Carlo (MC) simulations [45, 1, 2] are done in the NVT
ensemble; the total system size is N = 1024 or 400. A typical simulation run with 107 Monte
Carlo steps (MCS) per particle (including 3 × 106 MCS for relaxation) took about 50 CPU
hours on a PII/500 MHz PC.

6.2. Results and discussion

6.2.1. Phase diagrams. First we present the phase diagrams for systems with various
interaction potentials: hard discs in figure 14 [39], DLVO in figure 15 [40], 1/r12 in
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figure 16 [41, 42], and 1/r6 in figure 17. There are two transition points marked at zero
external potential: one calculated from ψ̃G1 and one from ψ6. The reason is that there are
two possible types of order: orientational order, to which ψ6 is sensitive, and positional order,
which is detected by ψ̃G1 . The transitions for V ∗

0 
= 0, extracted from ψG1 , for V ∗
0 → 0

converge to the transition calculated from ψ̃G1 . We thus define the phase boundary to be
spanned by the ψ̃G1 transition at V ∗

0 = 0, and by the ψG1 transitions for V ∗
0 
= 0.

Generally, beginning at zero external potential, the phase boundary bends down to lower
densities for growing V ∗

0 and reaches a minimum at V ∗
0 = 1, . . . , 2. Increasing V ∗

0 further, it
turns back to higher densities and finally saturates at V ∗

0 � 50. This ‘turning-back’ is clearly
visible in all cases except for the 1/r6 potential, where it seems to be less pronounced.

To quantify these observations, we define two dimensionless numbers �f and �r for the
width of the freezing- and reentrance region:

�f,r = δρf,r/ρ0, (35)

where δρf,r = ρ0,∞ − ρmin; see figure 18. In the case of the DLVO potential, using
ρ = (2κ2)/((κas)

2
√

3) and assuming κ as constant and as as variable (which is justified
since only the product κas is important, whereas the separate values of κ and as are not), we
can transform equation (35) into

�f,r = (κas)
2
0

(κas)
2
0,∞

− (κas)
2
0

(κas)
2
min

. (36)
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Table 1. Relative density difference (equations (34), (35)) �f,r of the freezing and reentrance
region and ratio �f/�r for various interaction potentials, and experimental data for colloids.

Hard disc DLVO 1/r12 1/r6 Colloids [27]

�f 0.043 0.13 0.11 0.20 0.39
�r 0.028 0.028 0.029 0.016 0.10
�f /�r 1.5 4.6 3.8 12.5 3.9

The values of�f , �r and the ratio�f/�r for the different systems are summarized in table 1.
The first four columns contain the values of our simulations, ordered from short range (left) to
long range interaction (right). The last column contains the values obtained in an experiment
with colloidal particles [27]. Analysing the simulations, we roughly observe an increase of the
freezing region (�f ) when going from short to long range interactions, whereas the reentrance
region (�r) is nearly constant for the first three potentials. Only in the case of the 1/r6-potential
is a drop of �r found, due to the long range nature of the pair interaction.

The experimental data in the last column shows freezing- and reentrance regions which are
about three times bigger than those of the corresponding DLVO simulation; the ratio �f/�r

of the freezing- and reentrance regions, however, is nearly identical. We have also done
simulations with slightly altered parameters, i.e., using particles with diameter 2R = 3 µm,
effective surface charge Z∗ = 20 000 and as = 8 µm, to match the experiments in [29] as
closely as possible. Only a small shift of the phase diagram was found by �(κas) ≈ 0.35
towards higher values of κas, and a negligible change in �f and�r. The differences between
simulation and experiment may be due to the presence of many-body interactions in the
experiment, which are not treated properly by the DLVO interactions used in the simulation
(see [46]).

In summary, we have presented the phase diagrams of two-dimensional systems of
hard [39] and various soft discs [40–42] in an external sinusoidal potential. We find an increase
of the freezing region with the range of particle interaction, and a decrease of the reentrance
region for the most long ranged potential 1/r6. The relative extent of the reentrance region is
closest to the experimental data for the DLVO or the 1/r12-potentials.

6.3. Phase diagram by renormalized constants

The phase diagram of a 2D hard disc system with a modulating potential has been computed [47]
as well by following a Monte Carlo renormalization approach proposed recently [48]. A
cartoon of the system considered for our study is given in figure 19. For a solid in the presence
of a modulating potential βV (y) (figure 19), displacement mode uy becomes massive, leaving
massless ux modes. After integrating out the uy modes the free energy of the locked floating
solid (LFS) may be expressed in terms of ux and βV0 dependent elastic moduli [32], namely,
the Young’s modulus K and shear modulus µ:

Hel =
∫

dx dy

[
K

(
∂ux

∂x

)2

+ µ

(
∂ux

∂y

)2
]
. (37)

Similar arguments [32] show that among the three sets of low energy dislocations available
in the 2D triangular lattice, only those (type I) with Burger’s vector parallel to the line of
potential minima survive at large βV0. Dislocations with Burger’s vector pointing along the
other two possible close-packed directions (type II) in the 2D triangular lattice have larger
energies because surrounding atoms are forced to ride the crests of the periodic potential [32].
Within this set of assumptions, the system therefore shares the same symmetries as the XY
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Figure 19. This cartoon shows a typical hard disc system. The
dashed lines indicate minima of external modulating potential
βV (y) = βV0 cos(2πy/d0). ax is the lattice parameter and
ay indicate the average separation between two layers along the
y-direction perpendicular to a set of close-packed planes. For a
perfect triangular lattice ay = √

3ax/2. The modulating potential
is commensurate with the lattice such that d0 = ay , i.e., the
commensurability ratio is one.

model. Indeed, a simple rescaling of x → √
µx and y → √

K y leads this free energy to

the free energy of the XY model with spin-wave stiffness Kxy = √
Kµ a2

4π2 and spin angle
θ = 2πux/ax . The corresponding theory for phase transitions can then be recast as a KTHNY
theory [17] and can be described in the framework of a two-parameter renormalization flow for
the spin-wave stiffness K (l) and the fugacity of type I dislocations y ′(l), where l is a measure
of length scale as l = ln(r/ax), r being the size of the system. The flow equations can be
expressed in terms of x ′ = (πKxy − 2) and y ′ = 4π exp(−βEc), where Ec is the core energy
of type I dislocations which can be obtained from the dislocation probability [18]. Keeping
up to next to leading order terms in y ′, the renormalization group flow equations [49, 48] are

dx ′

dl
= −y ′2 − y ′2x ′ (38)

dy ′

dl
= −x ′y ′ +

5

4
y ′3. (39)

Flows in l generated by the above equations starting from initial or ‘bare’ values of x ′ and y ′
fall in two categories. If as l → ∞, y ′ → ∞ then the thermodynamic phase is disordered
(i.e., a modulated liquid (ML)), and if y ′ → 0 it is an ordered phase (an LFS) [32]. The two
kinds of flows are demarcated by the separatrix which marks the phase transition point. For
the linearized equations the separatrix is simply the straight line y ′ = x ′, whereas for the full
non-linear equations one needs to calculate this numerically.

Again, the twin problems of diverging length and time scales are eliminated by simulating
a constrained system which does not undergo a phase transition! This is achieved by rejecting
all Monte Carlo moves which tend to distort an unit cell in a way which changes the local
connectivity [18]. The percentage of moves thus rejected is a measure of the dislocation
fugacity [18]. This, together with the elastic constants of the dislocation-free lattice obtained
separately [50], are taken as inputs (bare values) to the renormalization flow equations [32]
to find out the melting points and hence the phase diagram. The resulting phase diagram
(figure 20) clearly shows a modulated liquid (ML) → locked floating solid (LFS) → ML
reentrant transition with increase in the amplitude (V0) of the potential. In general, the
predictions of the theory of [32] appear to be valid. The locations of the phase transitions as
evaluated within this theory with our inputs, however, do not agree with earlier simulations [39]
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Figure 20. The phase diagram of the hard disc system in the presence of a 1D, commensurate,
periodic potential in the packing fraction (η = (π/4)ρd2)-potential strength (βV0) plane. The
lines in the figure are a guide to the eye. The dashed curve denotes earlier Monte Carlo simulation
results [39] and the solid curve is calculated through the numerical renormalization group study [47].
The dotted curve at η � 0.69 denotes the calculated asymptotic phase transition point at βV0 = ∞.

throughout the η–βV0 plane. The phase diagram here is obtained by solving the flow equations
correct to third order in the defect fugacity; inclusions of still higher order terms may improve
the agreements with simulations.
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